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Abstract. We study a two-dimensional honeycomb lattice-gas model with both nearest- and
next-nearest-neighbour interactions in a staggered field, which describes the surface of a
stoichiometrically binary crystal. We calculate the anisotropic step tension, step stiffness and
equilibrium island shape, by an extended random walk method. We apply the results to the Si(111)
7× 7 reconstructed surface and the high-temperature Si(111) 1× 1 surface. We also calculate the
inter-step interaction coefficient.

1. Introduction

Recent developments of experimental techniques such as STM (scanning–tunnelling
microscopy) [1], LEEM (low-energy electron microscopy) [2] and REM (reflection electron
microscopy) [3] make it possible to observe a step on a crystal surface in a wide range of length
scales. However, the connection among quantities measured in different scales has not been
clarified yet.

In [4], for a two-dimensional (2D) square-lattice Ising model with both nearest- and next-
nearest-neighbour (nn and nnn) interactions, we calculated the anisotropic interface tension
and interface stiffness by the imaginary path-weight (IPW) method which is an extended
Feynman–Vdovichenko random walk method [5–8]. In the method, the overhang structure
in a step is taken into account, which leads to high accuracy of the results in a wide range of
temperature.

We applied the results to the Si(001) surface based on the microscopic kink energy obtained
by Swartzentruberet al [9]. The Ising result gave a satisfactory explanation for experimentally
measured step tensionγ , step stiffness̃γ and equilibrium island shape obtained by Barteltet al
[10] on the Si(001) surface.

In the present paper, we consider the honeycomb lattice Ising system in a staggered field,
with both nn and nnn interactions, to calculate interface tension, interface stiffness, island
shape and the coefficient of step interaction by the IPW method. We aim to apply the results
to Si(111) 7× 7 reconstructed surfaces and the high-temperature Si(111) 1× 1 surface.

0953-8984/99/356635+18$30.00 © 1999 IOP Publishing Ltd 6635



6636 N Akutsu and Y Akutsu

2. Model Hamiltonian

We consider a honeycomb lattice with 2N sites. We decompose the lattice into two triangular
sublattices designated by A and B. On the A sublattice, we define the occupation variableCAi

which takes 1 (present) or 0 (absent) at the sitei. Similarly, we defineCBj for the B sublattice.
The lattice gas HamiltonianHLG is then written as

HLG = −4J1

∑
〈i,j〉

[CAiCBj − 1
2(CAi +CBj )] − 4JA2

∑
〈i,j〉

[CAiCAj − 1
2(CAi +CAj )]

−4JB2

∑
〈i,j〉

[CBiCBj − 1
2(CBi +CBj )] − εA

N∑
i=1

CAi − εB

N∑
i=1

CBi (2.1)

where 4J1 is the bond energy between the A atom and B atom of the nn sites and 4JA2 and
4JB2 are the bond energies between nnn atoms.εA (εB) is the ‘surface chemical potential’ of
the A atom (B atom). We consider the simplest case whereεA andεB are given by

εA = µA,gas(PA, PB, T )− µA,surf(T )

εB = µB,gas(PA, PB, T )− µB,surf(T )

}
. (2.2)

In the above,µA,gas(PA, PB, T ) is the chemical potential of the A atom in the gas,PA is the
partial pressure of the A atom in the gas phase (similarly forµB,solid(T ), µB,gas(PA, PB, T )

andPB); µA,surf(T ) andµB,surf(T ) are expressed as

µA,surf = 1E(T ) +µsolid(T )

µB,surf = −1E(T ) +µsolid(T )
(2.3)

where1E(T ) has been introduced as the difference from the chemical potential of atoms in
the bulk solidµsolid(T ).

Let us consider the bulk phase-coexistence state of the stoichiometrically binary system.
The total chemical potential of the system has to be unchanged under removal of one pair of
AB atoms from crystal into vapour and vice versa. Hence, as the coexistence condition, we
have

µA,gas(PA, PB, T ) +µB,gas(PA, PB, T ) = 2µsolid(T ). (2.4)

Combining (2.2)–(2.4), we obtain

εB = −εA . (2.5)

This condition also means that, in the lattice gas Hamiltonian (2.1), the total energy of the
all-occupied state is the same at that of the all-empty state.

Let us introduce the Ising spin variables{σAi} and{σBi} as

σAi = 2(CAi − 1
2) σBi = 2( 1

2 − CBi ). (2.6)

Substituting (2.6) into the Hamiltonian (2.1) together with (2.5), we have the Ising AF
HamiltonianH:

H = HLG +Nz6J1 +Nz3(JA2 + JB2)/2,= J1

∑
〈i,j〉

σAiσBj − JA2

∑
〈i,j〉

σAiσAj − JB2

∑
〈i,j〉

σBiσBj

−H
N∑
i=1

σAi −H
N∑
i=1

σBi +Nz6J1 +Nz3(JA2 + JB2)/2 H = εA/2

(2.7)

wherez6 = 3 andz3 = 6 are the coordination numbers of honeycomb lattice and triangular
lattice, respectively.
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3. Imaginary path-weight method

We calculate interface quantities by a random walk method with imaginary path weight (IPW)
[6–8]. We regard an interface with zigzag configuration as a trace of a 2Dfreerandom walk.

Consider an interface which connects sites O and P. We denote the distance between sites
O and P byR (figure 1). The interface of the two-dimensional Ising model is made by fixing
the boundary spins as depicted in figure 1. Let us denote the partition function the Ising model
with and without interface byZ+−

R (θ) andZ++
R , respectively, whereθ is the slant angle of an

interface relative to a lattice axis [11, 12]. The interface tensionγ (θ, T ) is defined as

γ (θ, T ) = −kBT lim
R→∞

1

R
ln

[
Z+−
R (θ)

Z++
R

]
(3.1)

whereZ+−
R (θ)/Z++

R is regarded as the interface partition functionG.

Figure 1. Examples of an interface of the square lattice Ising model made by fixing the boundary
spins.

We apply Vdovichenko’s method [5] to deal with the low-temperature diagrammatic
expansion ofZ+−

R (θ) andZ++
R . The method, which originally treated the high-temperature

expansion of the partition function, also works for low-temperature expansion to evaluate
the weighted sum over all possible domain-wall configurations. The essential point in the
Vdovichenko method is the introduction of the imaginary factor eiφ/2 at each turn (with angle
φ) of the random walks of the domain wall. With this simple recipe, the problem reduces to a
free random walk problem on a lattice.

We see thatZ++
R equals the weighted sum over possible configurations of closed domain

walls; andZ+−
R (θ)equals the weighted sum over possible configurations of closed domain walls

plus a single ‘open’ domain wall traversing the lattice. In evaluatingZ+−
R (θ) by Vdovichenko’s

method, the free random walk nature allows us to ‘decouple’ the open domain wall from closed
domain walls [6, 7]. Therefore, in the limit ofR → ∞, the interface partition function is
equivalent to the ‘edge-to-edge’ lattice Green function of the free random walk running on the
dual lattice [7]. Thus, in the limit ofR →∞, the interface partition functionG is written as
[7]

G = exp(−γ (θ)R/kBT ) = 1

(2π)2

∫ π

−π

∫ π

−π
dkx dky

eikR

D(k)
(3.2)

where theD-function is defined as

D(k) = det[1− Â(k)]. (3.3)

Here,Â(k) is the Fourier component of the connectivity matrixA(r) which characterizes the
random walk.
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The above-described imaginary path-weight random walk method to calculateγ (θ, T ) is
exact only for solvable cases. However, we have verified that the method works fairly well
also for non-solvable cases [4, 8, 13, 14].

After evaluating the integral by the pure imaginary saddle pointω = (ωx, ωy), we obtain
a set of equations

D(iω) = 0

∂D(iω)

∂ωy

/
∂D(iω)

∂ωx
= tanθ

(3.4)

and

γ (θ, T ) = kBT (ωx cosθ + ωy sinθ). (3.5)

From the thermodynamical theory on equilibrium crystal shape (island shape) [16], we have,

ωx = λy/kBT ωy = λx/kBT (3.6)

whereλ is the Lagrange multiplier associated with the volume-fixing constraint in the Wulff
construction, andx andy are the Cartesian coordinates describing the 2D island shape. Thus,
we obtain the island shape directly from (3.4) with (3.5). Equation (3.6) gives relation between
the interface orientation angleθ and the point(x, y) on the island shape.

The interface stiffness, which we denote byγ̃ (θ), is given by [13]

γ̃ (θ) = γ (θ) +
∂2γ (θ)

∂θ2
= kBT

√
D2
x +D2

y [−Dxx sin2 θ +Dxy sin 2θ −Dyy cos2 θ ]−1, (3.7)

where

Dx = ∂D

∂ωx
Dy = ∂D

∂ωx
Dxx = ∂2D

∂ω2
x

Dyy = ∂2D

∂ω2
y

Dxy = n ∂2D

∂ωxωy
.

(3.8)

The one-dimensional interface of the lattice gas corresponds to a step on the vicinal surface.
For the vicinal surfaces, the surface free energy per projected area, which we denote byf (ρ),
is written as [17–19]

f (ρ) = f (0) + γ (θ)ρ +B(θ)ρ3 ρ = 1

ah
tanφ (3.9)

whereρ is the step density,φ is the tilted angle of the vicinal surface andah is the step height,
andB(θ) is the inter-step interaction coefficient. We have [20, 21]

B(θ) = π2

6

(kBT )
2

γ̃ (θ)
λ2(g0) λ(g0) = 1

2

(
1 +

√
1 +

4γ̃ (θ)

(kBT )2
g0

)
(3.10)

whereg0 is the coupling constant of the long-range interaction between the steps of the form
g0/r

2
s (rs is the step separation distance). Note that, in the limit ofg0 → 0, the factorλ(g)

approaches unity, leading to [18, 19]

B(θ) = π2

6

(kBT )
2

γ̃ (θ)
. (3.11)

Hence, the stiffness (3.7) can be utilized in determining the inter-step interaction coefficient
B(θ).
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4. The connectivity matrix and theD-function

4.1. The honeycomb lattice gas model with next-nearest-neighbour interaction

We apply the IPW method to calculate interface quantities of the nnn Ising model on the
honeycomb lattice described by Hamiltonian (2.1), (2.7) (figure 2). The Fourier components
of the connectivity matrix(Am,n) are

A1,1 = exp(ikx)W/WH

A2,1 = exp(ikx)W/WHrp

A3,1 = exp(ikx)W/WHrprpWa

A5,1 = exp(ikx)W/WHrmrmWb

A6,1 = exp(ikx)W/WHrm

A1,2 = exp(ikx/2 + ikycy)WWHrm

A2,2 = exp(ikx/2 + ikycy)WWH

A3,2 = exp(ikx/2 + ikycy)WWHrp

A4,2 = exp(ikx/2 + ikycy)WWHrprpWb

A6,2 = exp(ikx/2 + ikycy)WWHrmrmWa

A1,3 = exp(−ikx/2 + ikycy)W/WHrmrmWb

A2,3 = exp(−ikx/2 + ikycy)W/WHrm

A3,3 = exp(−ikx/2 + ikycy)W/WH

A4,3 = exp(−ikx/2 + ikycy)W/WHrp

A5,3 = exp(−ikx/2 + ikycy)W/WHrprpWa

A2,4 = exp(−ikx)WWHrmrmWa

A3,4 = exp(−ikx)WWHrm

A4,4 = exp(−ikx)WWH

A5,4 = exp(−ikx)WWHrp

A6,4 = exp(−ikx)WWHrprpWb

A1,5 = exp(−ikx/2− ikycy)W/WHrprpWa

A3,5 = exp(−ikx/2− ikycy)W/WHrmrmWb

A4,5 = exp(−ikx/2− ikycy)W/WHrm

A5,5 = exp(−ikx/2− ikycy)W/WH

A6,5 = exp(−ikx/2− ikycy)W/WHrp

A1,6 = exp(ikx/2− ikycy)WWHrp

A2,6 = exp(ikx/2− ikycy)WWHrprpWb

A4,6 = exp(ikx/2− ikycy)WWHrmrmWa

A5,6 = exp(ikx/2− ikycy)WWHrm

A6,6 = exp(ikx/2− ikycy)WWH

others= 0

(4.1)

where i2 = −1, cy =
√

3/2, W = exp[−2(J1 + 2JA2 + 2JB2)/(kBT )], WH =
exp[−2H/(3kBT )], Wa = exp[4JA2/(kBT )], Wb = exp[4JB2/(kBT )], rp = exp(iπ/6) and
rm = exp(−iπ/6).
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Figure 2. Examples of an interface configuration. A atom and B atom are indicated by filled circle
and open circle, respectively. The thick line represents an interface.

Then, theD-function defined by (3.3) is

D(kx, ky) = M + c1 cosh(kx) + c1 cosh(kx/2− cyky) + c1 cosh(kx/2 + cyky) + c2 cosh(2kx)

+c2 cosh(kx − 2cyky) + c2 cosh(kx + 2cyky) + c3 cosh(2cyky)

+c3 cosh(3kx/2− cyky) + c3 cosh(3kx/2 + cyky) + s1 sinh(kx) + s2 sinh(2kx)

−s2 sinh(kx − 2cyky) + s4 sinh(kx/2− cyky) + s4 sinh(kx/2 + cyky)

−s2 sinh(kx + 2cyky) (4.2)

where

M = 1 + 3W 2 + 4W 6−W 3/W 3
H −W 3W 3

H − 12W 6Wa + 9W 6W 2
a + 4W 6W 3

a

+(W 3W 3
a )/W

3
H +W 3W 3

HW
3
a − 6W 6W 4

a +W 6W 6
a − 12W 6Wb

+30W 6WaWb + (3W 3WaWb)/W
3
H + 3W 3W 3

HWaWb − 18W 6W 2
aWb

−6W 6W 3
aWb + 6W 6W 4

aWb + 9W 6W 2
b − 18W 6WaW

2
b + 3W 4W 2

aW
2
b

+9W 6W 2
aW

2
b + 4W 6W 3

b + (W 3W 3
b )/W

3
H +W 3W 3

HW
3
b − 6W 6WaW

3
b

+2W 6W 3
aW

3
b − 6W 6W 4

b + 6W 6WaW
4
b +W 6W 6

b (4.3)

c1 = W 2/W 2
H −W 4/W 2

H −W/WH −WWH +W 2W 2
H −W 4W 2

H + (W 4Wa)/W
2
H

+W 4W 2
HWa + (W 4W 2

a )/W
2
H +W 4W 2

HW
2
a − (W 4W 3

a )/W
2
H −W 4W 2

HW
3
a

+(W 4Wb)/W
2
H +W 4W 2

HWb − (W 2WaWb)/W
2
H − (W 4WaWb)/W

2
H

+(2W 3WaWb)/WH − (2W 5WaWb)/WH + 2W 3WHWaWb

−2W 5WHWaWb −W 2W 2
HWaWb −W 4W 2

HWaWb + (3W 5W 2
aWb)/WH

+3W 5WHW
2
aWb − (W 5W 4

aWb)/WH −W 5WHW
4
aWb + (W 4W 2

b )/W
2
H

+W 4W 2
HW

2
b + (3W 5WaW

2
b )/WH + 3W 5WHWaW

2
b − (3W 5W 2

aW
2
b )/WH

−3W 5WHW
2
aW

2
b − (W 4W 3

b )/W
2
H −W 4W 2

HW
3
b − (W 5WaW

4
b )/WH

−W 5WHWaW
4
b (4.4)

c2 = [W 3(1 +W 2
H )(−1 +Wa)(−1 +Wb)]/WH (4.5)

c3 = 2W 4(−1 +Wa)(−1 +Wb)(−1 +Wa +Wb +WaWb) (4.6)
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s1 = −[W(−1 +WH)(1 +WH)(W −W 3 +WH +WW 2
H −W 3W 2

H +W 3Wa +W 3W 2
HWa

+W 3W 2
a +W 3W 2

HW
2
a −W 3W 3

a −W 3W 2
HW

3
a +W 3Wb +W 3W 2

HWb

−WWaWb −W 3WaWb − 2W 2WHWaWb + 2W 4WHWaWb −WW 2
HWaWb

−W 3W 2
HWaWb − 3W 4WHW

2
aWb +W 4WHW

4
aWb +W 3W 2

b +W 3W 2
HW

2
b

−3W 4WHWaW
2
b + 3W 4WHW

2
aW

2
b −W 3W 3

b −W 3W 2
HW

3
b

+W 4WHWaW
4
b )]/W

2
H (4.7)

s2 = −[W 3(−1 +WH)(1 +WH)(−1 +Wa)(−1 +Wb)]/WH (4.8)

s4 = [W(−1 +WH)(1 +WH)(W −W 3 +WH +WW 2
H −W 3W 2

H +W 3Wa +W 3W 2
HWa

+W 3W 2
a +W 3W 2

HW
2
a −W 3W 3

a −W 3W 2
HW

3
a +W 3Wb +W 3W 2

HWb

−WWaWb −W 3WaWb − 2W 2WHWaWb + 2W 4WHWaWb −WW 2
HWaWb

−W 3W 2
HWaWb − 3W 4WHW

2
aWb +W 4WHW

4
aWb +W 3W 2

b +W 3W 2
HW

2
b

−3W 4WHWaW
2
b + 3W 4WHW

2
aW

2
b −W 3W 3

b −W 3W 2
HW

3
b

+W 4WHWaW
4
b )]/W

2
H . (4.9)

We substitute theD-function into (3.4) and solve with respect to(ωx, ωy) as a function of
θ . Substituting the solution(ωx(θ), ωy(θ)) into (3.5)–(3.8), we obtain the interface tension,
2D island shape and the interface stiffness.

Note that theD-function has mirror symmetry with respect tokx-axis, i.e.D(kx, ky) =
D(kx,−ky). Therefore, the island shape has mirror symmetry with respect to thekx-axis. That
is, ωy(0) = 0 andωy(π) = 0 are the solutions of (3.4). At the orientation corresponding to
θ = 0 or θ = π , the form (4.2) reduces to

D(kx, 0) = M + c3 + c1 cosh(kx) + 2c1 cosh(kx/2) + c2 cosh(2kx) + 2c2 cosh(kx)

+2c3 cosh(3kx/2) + s1 sinh(kx) + s2 sinh(2kx)− 2s2 sinh(kx)

+2s4 sinh(kx/2). (4.10)

From the solution ofD(kx, 0) = 0 (ωy(0) = ωy(π) = 0), we obtain cosh(ωx(0)/2) and
cosh(ωx(π)/2). Then, from (3.5), step tension becomes

γ (0) = 2kBT cosh−1(ωx(0)/2) γ (π) = 2kBT cosh−1(ωx(π)/2). (4.11)

In theT → 0 limit, step tension (step free energy per lattice constant) becomes

γ (0) = min[2J1 + 4J2 + 2
3H, 2(2J1 + 4J2 − 2

3H)]

γ (π) = min[2J1 + 4J2 − 2
3H, 2(2J1 + 4J2 + 2

3H)]
(4.12)

where min[a, b] denotes the smaller one in{a, b}.
From (3.7), the step stiffness becomes

γ̃ (0) = kBT [|c1 sinh(ωx(0)/2) + (c1 + 2c2) sinh(ωx(0)) + 3c3 sinh(3ωx(0)/2)

+2c2 sinh(2ωx(0)) + s4 cosh(ωx(0)/2) + (s1 + 2s2) cosh(ωx(0))

+2s2 cosh(2ωx(0))|]/[2c2
y(2c3 + c1 cosh(ωx(0)/2) + 4c2 cosh(ωx(0))

+c3 cosh(3ωx(0)/2) + s4 sinh(ωx(0)/2)− 4s2 sinh(ωx(0)))] (4.13)

γ̃ (π) = kBT [|c1 sinh(ωx(π)/2) + (c1 + 2c2) sinh(ωx(π)) + 3c3 sinh(3ωx(π)/2)

+2c2 sinh(2ωx(π)) + s4 cosh(ωx(π)/2) + (s1 + 2s2) cosh(ωx(π))

+2s2 cosh(2ωx(π))|]/[2c2
y(2c3 + c1 cosh(ωx(π)/2) + 4c2 cosh(ωx(π))

+c3 cosh(3ωx(π)/2) + s4 sinh(ωx(π)/2)− 4s2 sinh(ωx(π)))]. (4.14)
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Figure 3. An example of calculation by the use of theD-function of (4.2). (a) The island shape at
900◦C, (b) a polar graph of step stiffness at 900◦C, (c) temperature dependence of step tension,
(d) temperature dependence of step stiffness and (e) temperature dependence ofg = B/a3

h. We
have setJ1 = 165 meV,J2 = −16.5 meV andH = 165 meV. Kink energies are 88 meV for the
(21̄1̄) step and 176 meV for the(2̄11) step. In (c)–(e), thick lines correspond to(2̄11) steps, thin
lines to(21̄1̄) steps and broken lines to{101̄} steps.

In figure 3, we show an example of an equilibrium island shape and a polar graph of step stiffness
at J1 = 165 meV,J2/J1 = −0.1, lattice constant= 3.84 Å andH/J1 = 1. We also show
the temperature dependence of step tension, step stiffness, the coefficient of step interaction
(3.11) whereg = B/a3

h, ah = 3.14 Å andg0 = 0.
In the absence of nnn interactions,Wa andWb reduce to unity. TheD-function (4.2), then,

becomes

D(kx, ky) = M + c1 cosh(kx) + 2c1 cosh(kx/2− cyky) + c1 cosh(kx/2 + cyky) + s1 sinh(kx)

+s4 sinh(kx/2− cyky) + s4 sinh(kx/2 + cyky) (4.15)

M = 1 + 3W 2 + 3W 4 +W 6 + 4W 3(W 3
H + 1/W 3

H )

c1 = −(1−W)2W(1 +W)2(1 +W 2
H )/WH

s1 = −s4 = (1−W)2W(1 +W)2(1 +WH)(1−WH)/WH c2 = c3 = s2 = 0 (4.16)

which agrees with theD-function given in [13].
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4.2. The case ofH = 0

At H = 0, s1, s2 ands4 in (4.2) become zero, sinceWH reduces to unity. TheD-function,
then, has the symmetryD(kx, ky) = D(±kx,±ky). The island shape has mirror symmetry
with respect to theky-axis too;ωx(π/2) = ωx(3π/2) = 0 becomes the solution of (3.4). The
equation

D(0, ky) = M + c1 + c2 + 2(c1 + c3) cosh(cyky) + (2c2 + c3) cosh(2cyky) = 0 (4.17)

is solved, in terms of cosh(cyωy) (ky = iωy), as

cosh(cyωy) = − c1 + c3

2(2c2 + c3)
+

√
(c1 + c3)2

4(2c2 + c3)2
+
−c1 + c2 + c3−M

2(2c2 + c3)
≡ z. (4.18)

By use of this solution, we obtain the step tension as

γ (π/2) = γ (3π/2) = kBT

cy
cosh−1(z) (4.19)

and the step stiffness as

γ̃ (π/2) = γ̃ (3π/2) = −4kBT cy
√
z2 − 1|c1 + c3 + 2(2c2 + c3)z|

2c1 + 4c2 + (c1 + 9c3)z + 8c2z2
. (4.20)

In the case ofJA2 = JB2 = 0, theD-function reduces to that of the exact solution for the
nn honeycomb lattice system [22].

That is,

D(kx, ky) = M + c1 cosh(kx) + c1 cosh(kx/2− cyky) + c1 cosh(kx/2 + cyky)

M = (1 +W)2(1− 2W + 6W 2 − 2W 3 +W 4)

c1 = −2(1−W)2W(1 +W)2 c2 = c3 = s1 = s2 = s4 = 0.

(4.21)

At θ = 0, we obtain an explicit form of the solutions as

ωy(0) = 0 cosh(ωx(0)/2) = 1
2

√
3− 2M/c1− 1

2 . (4.22)

Also, atθ = π/2, we have

ωx(π/2) = 0 cosh(cyωy(π/2)) = 1
2(−M/c1− 1). (4.23)

Hence, the interface tensions become

γ (0) = 2kBT ln(my)

my = − 1
2 + 1

2z2 + 1
2

√
(z2 − 3)(z2 + 1)

z2 = (1 +W)
√

1−W +W 2

√
W |1−W |

(4.24)

γ (π/2) = 1/cykBT ln[(−2 + 1/W +W)/2]. (4.25)

Due to the Wulff theorem,γ (0) andγ (π/2) give the linear size of the island shape alongx-
andy-directions. The explicit form of interface stiffness becomes

γ̃ (0) = kBT

c2
y

z2
√−3− 2z2 + z2

2(z2 − 1)
(4.26)

γ̃ (π/2) = 4kBT cy
(1 +W 2)|1− 4W +W 2|

1 + 4W − 6W 2 + 4W 3 +W 4
. (4.27)
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4.3. Triangular lattice

In the limit of J1 → 0, the system becomes two independent triangular lattice gases. In
this case, the random walk treatment on the honeycomb lattice may not be good enough. In
fact, (4.2) in this limit gives aD-function slightly different from the known exact one on the
triangular lattice. Hence, we need a separate study to treat this case.

TheD-function of the triangular lattice becomes

D3(kx, ky) = M − c1 cosh(ky)− c2 cosh(
√

3kx/2− ky/2)− c3 cosh(
√

3kx/2 + ky/2),
(4.28)

where

M = 1 +W 2
1W

2
2 +W 2

1W
2
3 +W 2

2W
2
3 c1 = 2(1−W1)(1 +W1)W2W3

c2 = 2W1W2(1−W3)(1 +W3) c3 = 2W1(1−W2)(1 +W2)W3 (4.29)

W1 = exp[−2J1/(kBT )], W2 = exp[−2J2/(kBT )] and W3 = exp[−2J3/(kBT )]. The
equations agree with the known exact one [22]. Note that the form ofD3(kx, ky) (4.27) is
essentially the same asD(kx, ky) of the nn honeycomb lattice (4.20). Therefore, the island
shape of the triangular lattice obtained from (3.4) is the same as the one of the honeycomb
lattice. The difference is the temperature dependence of coefficients. WhenJ1 = J2 = J3 = J ,
i.e.W1 = W2 = W3 = W , theD-function has a symmetry ofD3(kx, ky) = D3(±kx,±ky).
Hence, we have explicit forms ofγ andγ̃ for special orientations. Therefore, we have

γ3(0) = 2√
3
kBT ln

[
1−W 2

2W 2

]
(4.30)

γ3(π/2) = 2kBT cosh−1

(
− 1

2
+

1

2

√
3 +

1 + 3W 4

W 2(1−W)(1 +W)

)
. (4.31)

The step stiffness is written as

γ̃3(0) = 2
√

3kBT (1 +W 2)|1− 3W 2|
1 + 6W 2 − 3W 4

(4.32)

γ̃3(π/2) = 2kBT

3

√
(1 + 3W 2)(1 + 3W 4 − 2Wz1 + 2W 3z1)

W(z1−W)|1−W 2| z1 =
√

1 + 3W 2

1−W 2
. (4.33)

5. Application to Si(111) surface

5.1. The 7× 7 reconstructed surface

At temperatures lower than the 7× 7↔ 1× 1 transition temperature (∼1130 K), the Si(111)
surface forms a 7× 7 reconstructed structure called the DAS (dimer adatom stacking-fault)
structure [23]. The unit cell of the DAS structure is divided into the faulted half (FH) and
the unfaulted half (UH) [24], each of which forms a triangular lattice. It has been observed
that the step structure is well described by the combination of the FH unit and UH unit [25].
We consider, therefore, a pair of triangular sublattices, where the one represents the FH lattice
system, and the other represents the UH one. Consequently, the system becomes equivalent
to a stoichiometrically binary lattice gas on a honeycomb lattice with nn interactions, where
the inequivalent sites of the lattice gas model are coarse-grained representations of these two
halves of the 7×7 unit cell. Therefore, we can use (4.15) and (4.16) to calculate step quantities.
In figure 2, we regard closed circles as FH units, and open circles as UH units. We set lattice
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Figure 4. Examples of a step edge on the 7× 7 reconstructed Si(111) surface. ‘U’ denotes an
unfaulted half unit, and ‘F’ denotes a faulted half unit.

constant= 3.84× 7 Å and step height= 3.14 Å. We introduce the step running direction
angleθ so that a straight step withθ = 0 corresponds to the(112̄) step (figure 4).

In spite of the extensive experimental studies on Si(111)7×7 structure, the values of kink
energy and step tension have not been settled yet. As one trial, we adopt the result of Eaglesham
et al [26] where step tensionγ at 700◦C was obtained from the equilibrium crystal shape (ECS)
of Si: γ111 = 5.7× 10−11 J m−1 for the (111) surface andγ100 = 1.0× 10−11 J m−1 for the
(100) surface. Due to the 2× 1 reconstruction, this value ofγ100 corresponds to the mean
value of theSA-step tension and theSB-step tension, and is consistent with the one calculated
in our previous papers [4, 15].

We choose kink energy so that the calculated mean value of step tension for(21̄1̄) and

(2̄11) at 700◦C reproduces the above mentioned value 5.7× 10−11 J m−1 (= 36 meV Å
−1

).
In addition, the experimental observation of the island shape (and also the shape of the spiral
step) gives further information on the kink energy, due to the Wulff theorem for 2D ECS. Let
hn be the distance between the centre (=Wulff point) of the ECS (island shape, in our case)
and the tangential line of the ECS at a position on the ECS curve, wheren is the interface
normal vector at the position. The Wulff theorem states that the ratiohn/γn (γn: interface
tension, or step tension in our case) isn independent, leading to a relationγn/γn′ = hn/hn′
for arbitraryn andn′. From the photographs of the experimental observation [27, 28], we
haveh2̄11/h21̄1̄ = 1.2. This ratio gives the ratio between the step free energies corresponding
to these directions. At the low temperature where the observation was made, these step free
energies are well approximated by the step formation energies(2J + 2H/3) and(2J −2H/3)
(see (4.12)), giving ush2̄11/h21̄1̄ = 1.2 = (2J + 2H/3)/(2J − 2H/3) which amounts to
H/J = 0.31.

We then setJ = 0.475 eV andH = 0.15 eV. The kink energy becomes 1.05 eV =
2J + 2H/3 for the(21̄1̄) step and 0.85 eV= 2J −2H/3 for the(2̄11) step, which are smaller
than but of the same order as magnitude of the ones reported in [29] and [21].

The difference in the on-site energy between the UH and FH, is thenEFH − EUH =
4H = 0.59 eV. In the first principles study of Meade and Vanderbilt [30], surface energies of
the Si(111) surface for various structures are calculated: for example, 1.24 eV/1× 1 for the
2× 2-adatom structure, and 1.27 eV/1× 1 for the 2× 2-adatom (faulted) structure. From
these values, we can estimateEFH − EUH to be(1.27− 1.24) × 24 ∼ 0.7 eV which is in
reasonable agreement with our value 0.59 eV.

In figure 5, we show equilibrium island shape at 400◦C and 850◦C, and the temperature
dependence of step tension, step stiffness and step interaction coefficientg = B/a3

h (see
(3.11)). The step tension is almost constant below 1130 K, because the temperature is very
low as compared with the lattice-gas melting temperature of the model (∼8300 K). On the
other hand, the step stiffness strongly depends on temperature in the same region. The step
stiffness for the(21̄1̄) step increases rapidly as temperature decreases, while the step stiffness
of the(01̄1) step becomes smaller and smaller and converges to zero at zero temperature.
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Figure 5. Calculation for 7×7 reconstructed surface by the use of theD-function of (4.15). (a) The
island shape at 850◦C, (b) the island shape at 400◦C, (c) temperature dependence of step tension,
(d) temperature dependence of step stiffness and (e) temperature dependence ofg = B/a3

h. We
have setJ = 0.475 eV, 4H = 0.59 eV. Kink energy= 1.05 eV for the(21̄1̄) step and 0.85 eV
for the (2̄11) step. In (c)–(e), thick lines correspond to(21̄1̄) steps, thin lines to(2̄11) steps and
broken lines to{101̄} steps.

Note that a similar analysis can be made for ann×nDAS structure. From the photographs
of a small island of 5× 5 structure [28], we find that the island shape has a sixfold rotational
symmetry in contrast to the case of the 7×7 structure which has a threefold rotational symmetry.
Recall that the sixfold rotational symmetry appears only whenH = 0 (see section 4.2).
Therefore, the energy difference between FH and UH units in the case of the 5× 5 DAS
structure is very small if it exists. We stress here that, also for other structures, observation
of the anisotropy of the equilibrium island shape will be useful in determining the energy
difference between FH and UH units.

5.2. The 1× 1 high-temperature surface

The high-temperature Si(111) surface at about 900◦C has the structure of the 1× 1 surface
together with disordered adatoms with concentration of 0.25 [31–33]. Further, Kohmoto and
Ichimiya [31] reported that the number ratio of adatoms sitting on the T4 site and H3 site is
4:1. Although the adatoms are considered to be in a disordered phase, broad

√
3×√3 peaks
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Figure 6. Calculation for 1× 1 surface (case 1) by the use ofD-function of (4.2). (a) The island
shape at 900◦C, (b) a polar graph of step stiffness at 900◦C, (c) temperature dependence of step
tension, (d) temperature dependence of step stiffness and (e) temperature dependence ofg = B/a3

h.
We have setJ1 = 60 meV,J2 = 12 meV andH = 60 meV. Kink energy= 176 meV for the(21̄1̄)
step and 256 meV for the(2̄11) step. In (c)–(e), thick lines correspond to(21̄1̄) steps, thin lines to
(2̄11) steps and broken lines to{101̄} steps. Open squares: [38]. Open circle: [36].

appear in diffraction observations [31, 34] which suggests the existence of short-range order
corresponding to formation of the hard-hexagon units [35].

For the high-temperature surface of Si(111), experimental measurement of the step tension
and the step stiffness has been a subject of active study [21, 36–39]. The experimental values
are, however, not settled yet. We make, therefore, several trial calculations for possible cases.
In all cases, we choose the microscopic coupling constants so that the calculated step stiffness
at 900◦C reproduces the value presented by Barteltet al [36].

5.2.1. Case 1: adatom in disordered phase without short-range order.We use the honeycomb
lattice-gas system of (4.2), withJ1 andJ2 being regarded as effective coupling constants.

In figure 2 we regard the filled circles as atoms of the top layer and the open circles as
those of the second layer (the lattice constant= 3.84 Å, the step heightah = 3.14 Å).

We introduce the step running direction angleθ so that a straight step withθ = 0
corresponds to the(1̄1̄2) step. The effect of dangling bonds normal to the (111) plane are
taken into account by settingH/J1 = 1.
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Figure 7. Examples of an interface configuration for two cases of adatom orderings: (a)
√

3×√3
and (b) 2× 2. The thick line represents the interface. A atoms and B atoms are indicated by filled
circles and open circles, respectively. Adatoms are indicated by shaded large circles. Broken lines
denote boundaries between the hexagons.

We calculate equilibrium island shape, step stiffness and step interaction coefficient, which
we show in figure 6. Here, assuming thatJ2 is small, we have setJ2/J1 = 0.2 andJ1 = 60 meV.
The kink energy becomes 176 meV for the(21̄1̄) step and 256 meV for the(2̄11) step. As is
seen in the island shape and the polar graph of step stiffness at 900◦C, there remains anisotropy
in the step stiffness in spite of the circular island shape. The most significant characteristic of
this result is the asymmetry between the orientations(21̄1̄) and(2̄11). In contrast to the 7× 7
structure, the stiffness as a function of the step orientation takes its maximum at(2̄11).

5.2.2. Case 2: the
√

3 × √3 short-range ordered phase.In the case of the
√

3 × √3
ordered phase of adatoms, we calculate step quantities by using the triangular lattice-gas model
(figure 7(a)). As has been pointed out in section 4, the system has sixfold rotational symmetry.
We set the lattice constant to be 3.84×√3 Å, and the step height to be 3.14 Å. We introduce
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Figure 8. Case 2. Calculation for
√

3 × √3 adatom ordering (case 2) by the use of theD-
function of (4.30)–(4.33). (a) The island shape at 900◦C, (b) a polar graph of step stiffness at
900◦C, (c) temperature dependence of step tension, (d) temperature dependence of step stiffness,
(e) temperature dependence ofg = B/a3

h. We have setJ = 62 meV. Kink energy= 248 meV for
the{101̄} step. In (c)–(e), thick lines correspond to{21̄1̄} steps and thin lines to{101̄} steps. Open
squares: [38]. The open circle: [36].

the step running direction angleθ so that a straight step withθ = 0 corresponds to the(1̄1̄2)
step. The step tension and the step stiffness are calculated exactly from (4.30)–(4.33). The
effective coupling constant is obtained to beJ = 62 meV (kink energy= 248 meV). We show
the calculated results in figure 8. The step stiffness takes its maximum at the orientation{101̄}.

5.2.3. Case 3: the 2× 2 short-range ordered phase.Calculation of step quantities can be
done in the same fashion as in case 2. We set the lattice constant as 3.84× 2 Å, and the step
height as 3.14 Å (figure 7(b)). We introduce the step running direction angleθ so that a straight
step withθ = 0 corresponds to(01̄1) step. The step stiffness takes its maximum at{2̄11}.
The effective coupling constant is obtained to beJ = 67 meV (kink energy= 268 meV). We
show the calculated results in figure 9.
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Figure 9. Case 3. Calculation for 2× 2 adatom ordering (case 3) by the use of theD-function
of (4.30)–(4.33). (a) The island shape at 900◦C, (b) a polar graph of step stiffness at 900◦C,
(c) temperature dependence of step tension, (d) temperature dependence of step stiffness and
(e) temperature dependence ofg = B/a3

h. We have setJ = 67 meV: Kink energy= 268 meV for
the 2̄11̄ step. In (c)–(e), thick lines correspond to{21̄1̄} steps and thin lines to{101̄} steps. Open
squares: [38]. The open circle: [36].

6. Summary

We have considered the honeycomb lattice Ising system in a staggered field with both nearest-
neighbour (nn) and next-nearest-neighbour (nnn) interactions, to calculate interface tension,
interface stiffness and island shape by the imaginary path-weight (IPW) method.

We have applied the calculated results to Si(111) 7× 7-reconstructed surfaces and the
high-temperature Si(111) 1× 1 surface. We have made an estimation of the microscopic
coupling constants from existing experimental data, and have drawn the equilibrium island
shape, step tension, step stiffness and the coefficient of step interaction, with their temperature
dependence. Our analysis made in the present paper will be helpful in determining precise
value of the kink energy from experimental observation.

Our lattice-gas treatment made in the present paper corresponds to the two-level
approximation for the surface fluctuation. Fortunately, the temperature range of our concern
in the present study is very low: the two-level approximation is expected to be fairly reliable.
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On the other hand, at higher temperatures, near the roughening transition temperature, we
should consider multilevel fluctuation of the surface. Even in such cases, we have an efficient
method, namely, thetemperature-rescaled Ising-model approach[15], where the IPW method
is combined with the numerical renormalization-group method [40]; details will be discussed
elsewhere.
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