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Abstract. We study a two-dimensional honeycomb lattice-gas model with both nearest- and
next-nearest-neighbour interactions in a staggered field, which describes the surface of a
stoichiometrically binary crystal. We calculate the anisotropic step tension, step stiffness and
equilibrium island shape, by an extended random walk method. We apply the results to the Si(111)
7 x 7 reconstructed surface and the high-temperature Si(1%1) &urface. We also calculate the
inter-step interaction coefficient.

1. Introduction

Recent developments of experimental techniques such as STM (scanning—tunnelling
microscopy) [1], LEEM (low-energy electron microscopy) [2] and REM (reflection electron
microscopy) [3] make it possible to observe a step on a crystal surface in a wide range of length
scales. However, the connection among quantities measured in different scales has not been
clarified yet.

In [4], for a two-dimensional (2D) square-lattice Ising model with both nearest- and next-
nearest-neighbour (nn and nnn) interactions, we calculated the anisotropic interface tension
and interface stiffness by the imaginary path-weight (IPW) method which is an extended
Feynman—-Vdovichenko random walk method [5-8]. In the method, the overhang structure
in a step is taken into account, which leads to high accuracy of the results in a wide range of
temperature.

We applied the results to the Si(001) surface based on the microscopic kink energy obtained
by Swartzentrubegt al[9]. The Ising result gave a satisfactory explanation for experimentally
measured step tensign step stiffnessy and equilibrium island shape obtained by Bart¢kl
[10] on the Si(001) surface.

In the present paper, we consider the honeycomb lattice Ising system in a staggered field,
with both nn and nnn interactions, to calculate interface tension, interface stiffness, island
shape and the coefficient of step interaction by the IPW method. We aim to apply the results
to Si(111) 7x 7 reconstructed surfaces and the high-temperature Si(1%10) 4urface.
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2. Model Hamiltonian

We consider a honeycomb lattice witlvkites. We decompose the lattice into two triangular

sublattices designated by A and B. On the A sublattice, we define the occupation vagable

which takes 1 (present) or 0 (absent) at theisitgimilarly, we defineCg; for the B sublattice.
The lattice gas Hamiltoniak, ¢ is then written as

Hic =—4/1 Z[CAiCBj — 2(Cai + CB))] — 4Jn Z[CAiCAj — 2(Cai +Ca))]

(i.J) ()]

N N
—4JB2 Z[CBiCBj — 3(Cai +Cg))] — € Z Cai — €8 Z Cai (2.1)

(i, ]) i=1 i=1
where 4/; is the bond energy between the A atom and B atom of the nn sites.apchdd
4]g, are the bond energies between nnn atogadeg) is the ‘surface chemical potential’ of
the A atom (B atom). We consider the simplest case whgm@ndeg are given by

€A = N«A,gas(PA, P, T) — pa,surf(T) (2.2)
€B = MB,gas(PA, Ps, T)— MB,surf(T) '

In the aboveua gas(Pa, Ps, T) is the chemical potential of the A atom in the g%, is the

partial pressure of the A atom in the gas phase (similarlyd®oia(7), tg gas Pa, Ps, T)

and Pg); ua surf(T) andug surt(T) are expressed as

masurf = AE(T) + psoiia(T)
uBsuf = —AE(T) + psond(T)

whereAE(T) has been introduced as the difference from the chemical potential of atoms in
the bulk SOlidpLsond(T).

Let us consider the bulk phase-coexistence state of the stoichiometrically binary system.
The total chemical potential of the system has to be unchanged under removal of one pair of
AB atoms from crystal into vapour and vice versa. Hence, as the coexistence condition, we
have

(2.3)

,U«A,gas(PAa Pg, T)+ MB,gas(PA, P, T) = 2us0iia(T). (2.4)
Combining (2.2)—(2.4), we obtain
€B = —E€A. (25)

This condition also means that, in the lattice gas Hamiltonian (2.1), the total energy of the
all-occupied state is the same at that of the all-empty state.
Let us introduce the Ising spin variablgsa; } and{og; } as

oai = 2(Ca; — %) oB; = 2(% — Cgi). (2.6)

Substituting (2.6) into the Hamiltonian (2.1) together with (2.5), we have the Ising AF
Hamiltonian:

H =Hig+NzeJ1+ Nza(Ja2 +JB2)/2, = JlZUAiGBj —Ja2 ZGAiUAj - JBZZUBiGBj
(i,J) (i) (i,J)

N N
—HY oai— H ) _ o + NzgJ1+ Nza(Jnz + Je2) /2 H=¢€p/2
i=1 P
2.7)

wherezg = 3 andzz = 6 are the coordination numbers of honeycomb lattice and triangular
lattice, respectively.
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3. Imaginary path-weight method

We calculate interface quantities by a random walk method with imaginary path weight (IPW)

[6-8]. We regard an interface with zigzag configuration as a trace offaee2ibandom walk.
Consider an interface which connects sites O and P. We denote the distance between sites

O and P byR (figure 1). The interface of the two-dimensional Ising model is made by fixing

the boundary spins as depicted in figure 1. Let us denote the partition function the Ising model

with and without interface by ;™ (9) and Z}", respectively, wheré is the slant angle of an

interface relative to a lattice axis [11, 12]. The interface tengi@h T) is defined as

Z;(Q)}

(3.1)

++

o1
y(@,T):—kBTRIEnOOEIn[ :

whereZy (9)/Zy" is regarded as the interface partition functigin

E

Figure 1. Examples of an interface of the square lattice Ising model made by fixing the boundary
spins.

We apply Vdovichenko’'s method [5] to deal with the low-temperature diagrammatic
expansion ofZ;~(9) and Z}". The method, which originally treated the high-temperature
expansion of the partition function, also works for low-temperature expansion to evaluate
the weighted sum over all possible domain-wall configurations. The essential point in the
Vdovichenko method is the introduction of the imaginary factéffet each turn (with angle
¢) of the random walks of the domain wall. With this simple recipe, the problem reduces to a
free random walk problem on a lattice.

We see thaZ ;" equals the weighted sum over possible configurations of closed domain
walls; andZ},~ (9) equals the weighted sum over possible configurations of closed domain walls
plus a single ‘open’ domain wall traversing the lattice. In evalua#ijg(®) by Vdovichenko’s
method, the free random walk nature allows us to ‘decouple’ the open domain wall from closed
domain walls [6, 7]. Therefore, in the limit a8 — oo, the interface partition function is
equivalent to the ‘edge-to-edge’ lattice Green function of the free random walk running on the
dual lattice [7]. Thus, in the limit ok — oo, the interface partition functiog is written as
[7]

b g b4 eikR

g—a-wkayni—/ dlk, ey ———
—OR ORI =502 | )L %D

(3.2)
where theD-function is defined as
D(k) = det[1— A(k)]. (3.3)

Here,A(k) is the Fourier component of the connectivity matdi-) which characterizes the
random walk.
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The above-described imaginary path-weight random walk method to calguate) is
exact only for solvable cases. However, we have verified that the method works fairly well
also for non-solvable cases [4, 8, 13, 14].

After evaluating the integral by the pure imaginary saddle poigt (w,, w,), we obtain
a set of equations

D(iw) =0
i i 34
dD(iw) [ dD(w) _ ang (3.4)
dwy dwy
and
y(0,T) = ksT (wy COSY + w, SING). (3.5)

From the thermodynamical theory on equilibrium crystal shape (island shape) [16], we have,
wy = Ay/kgT wy = Ax/kgT (3.6)

wherel is the Lagrange multiplier associated with the volume-fixing constraint in the Wulff
construction, ana andy are the Cartesian coordinates describing the 2D island shape. Thus,
we obtain the island shape directly from (3.4) with (3.5). Equation (3.6) gives relation between
the interface orientation angbeand the pointx, y) on the island shape.

The interface stiffness, which we denotejb), is given by [13]

3%y (0 _ .
70) =y (@) + SVT(Z) — keT /D2 + DZ[~ D, sir?0 + Dy, sin 2 — D,y co 0] %, (3.7)

where

9D p 2D _9%°D 9°D 92D

Dx = y = xXx — ) = Dyy=n
2 Yy 2 Xy
dw? Glok

" daw, RN dw,wy

(3.8)
The one-dimensional interface of the lattice gas corresponds to a step on the vicinal surface.

For the vicinal surfaces, the surface free energy per projected area, which we derigte by
is written as [17-19]

1
f(p) = fO) +y(@)p+B®)o° p=_-tang (3.9)

wherep is the step density is the tilted angle of the vicinal surface amglis the step height,
and B(9) is the inter-step interaction coefficient. We have [20, 21]

_ % (ksT)? , 1 4y (0)
B©®) = EWA (go) A(go) = 5(1 +,/1 +mgo> (3.10)

wheregg is the coupling constant of the long-range interaction between the steps of the form
go/r? (ry is the step separation distance). Note that, in the limigoof> 0, the factori(g)
approaches unity, leading to [18, 19]

_ 7% (ksT)?

6 7O
Hence, the stiffness (3.7) can be utilized in determining the inter-step interaction coefficient
B(0).

B(®) (3.11)
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4. The connectivity matrix and the D-function

4.1. The honeycomb lattice gas model with next-nearest-neighbour interaction

We apply the IPW method to calculate interface quantities of the nnn Ising model on the
honeycomb lattice described by Hamiltonian (2.1), (2.7) (figure 2). The Fourier components
of the connectivity matriXA4,, ,) are

A11 = expiky )W/ Wy

Ap 1 = exiky )W/ Wyr,

Az = explik )W/ Wyr,r,W,

As 1 = exik, )W/ Wyryr, Wy

A1 = expiky )W/ Wyrpy

A1 = exp(iky /2 + ikycy )W Wy ry,

Apo = exp(ikx/2 + ikycy)WWH

Azp = ex(iky /2 +ikyc ) WWgr),

Asz = explik, /2 + ikyc, ) WWyr,r, W,

Agp = exp(iky /2 +ikycy )W Wyry,r, W,

A1z = exp(—iky/2 +ikyc, )W/ Wyt Wy

Apz = exp(—ik, /2 +ikyc, )W/ Wgr,,

Azz = exp(—ik, /2 +ik,c, )W/ Wy

Ay z = exp(—iky /2 +ikyc, )W/ Wyr),

Asz = exp(—ik, /2 +ikyc, )W/ Wyr,r, W,

Az = exp(—ik ) WWyrurn W, (4.1)

Az 4 = exp(—iky ) WWyry,

Agq = exXp(—ik, )WWy

As g = exp—ik,)WWgr,

Ag s = exp(—ik ) WWyr,r, Wy

Ars = exp(—ik, /2 — ik,c, )W/ Wyr,r, W,

Azs = exXp(—iky/2 — ikyc, )W/ Wty 1, Wy

Ags = exp(—iky /2 —ikyc )W/ Wy,

Ass = exp(—ik, /2 — ikyc, )W/ Wy

Aps = exp(—ik, /2 —ik,c, )W/ Wyr,

Ars = explik, /2 — ikycy,) WWgr,

Aze = exiky/2 — ikycy)WWyr,r, Wy,

Agp = explik, /2 — ikycy))WWyr,r, W,

As g = exp(iky /2 — ikycy))WWyr,,

A s = eXplik, /2 — ikyc, )W Wy

others=0
where ? = —1, ¢, = +/3/2, W = exp[-2(J1 + 2Jaz + 2J2)/(ksT)], Wy =

exp[-2H/(BksT)], W, = exp[4/az/(ksT)], W, = exp[4/s2/(ksT)], r, = exp(iz/6) and
rm = exp(—in /6).
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Figure 2. Examples of an interface configuration. A atom and B atom are indicated by filled circle
and open circle, respectively. The thick line represents an interface.

Then, theD-function defined by (3.3) is
D(ky, ky) = M + cycoshtky) + ¢y coshky /2 — cyky) + c1 COSNk, /2 + ¢\ ky) + c2 COSH(2k,)
+cp coshlk, — 2cyky) + ¢ coshlk, + 2c,ky) + c3COSN2¢yky)
+c3C0SN(3k, /2 — cyky) + 3 COSH 3k, /2 + cyky) + 51 SiNN(k, ) + 52 SINN(2k,)
—szsinh(k, — 2cyky) + sasinh(ky /2 — cyky) + s4Sinh(k, /2 + cyky)
—s2 Sinh(k, + 2c, k) (4.2)
where
M =1+3W2+4W° — W3/ W3 — W3W} — 12W°wW, + OWew? + 4wow?
+HW3W2) W3 + W3wi w2 — 6wew? + wewb — 12wew,
+30WOW, W), + BW3W,W,)/ W3 + 3W3W3 W, W, — 18WeW?W,
—6WOW3W, + 6WeW2AW, + OWOW? — 18WOW, W72 + 3W*W2W?
+OWOW2W2 + AWCW2E + (W3W2)/ W3 + W3W2 W2 — 6Wow, w2
+2WOW3WE — 6WOW} + 6WowW, W + woewp (4.3)
c1=W2/Wo — WY W2 — W/ Wy — WWy + W2W3 — WAW2 + (W*W,)/ W2
+WAWEW, + (WAW2) W2 + WAWE W2 — (WAW3)/ W2 — WAWEW3
+HWAW,) /W2 + WAW2E Wy, — (W2W, W)/ W2 — (WAW, W)/ W2
+WEW,W,) /Wy — QWoW, W)/ Wy + 2W3Wy W, W,
—2WWy W, W), — WEWEW, W, — WAW2W, W, + BW W2W,)/ Wy
+3WSWy W2W), — (WOWAW,) ) Wy — WOWy WAW, + (WAW2)/ W2
+WAW2Z W2 + BWSW, W)/ Wy + 3WSWy W, W7 — BWW2W?2)/ Wy
—3WSWyW2W2 — (WAW2)/ W2 — WAW2 WS — (WSW,WhH/ Wy
—WeWy W, W, (4.4)
c2 = [W3(L+ WA (=1 + W) (=1 +W,)]/ Wy (4.5)
3 =2WH=1+ W) (=1 +W,) (=1 + W, + W, + W, W) (4.6)
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s1= —[W(=1+ W)L+ Wp)(W — W3+ Wy + WW2 — W3W2 + W3W, + W3W2 W,
+W3IW2 + W3WEW2 — W3W3 — W3WE W2 + W3W, + W3WZ W,
—WW, W, — W3W, W), — 2W2Wy W, W), + 2W Wy W, W), — WW2 W, W,
—W3W2W, W, — SWAWy W2W, + WAWy WiW, + W3W2 + W3W2 w2
—3WAWL W, W2 + 3WA Wy W2WZ — W3W2 — W3W3 W2
+WAWL Wa W]/ WE 4.7)
s2 = —[W3(=1+Wi) (L + W) (=1 + W) (=1 +Wy)]/ Wy (4.8)
54 =[W(=1+Wp)L+Wg)(W — W3+ Wy + WWZ — W3W2 + W3W, + W3WZ W,
+W3IW2 + W3WEW2 — W3W2 — WA3WE W2 + W3W, + W3WZ W,
—WW, W, — W3W, W), — 2W2Wy W, W), + 2W Wy W, W), — WW2 W, W,
—W3W2W, W, — BWAWy W2W, + WAWy WiW, + W3W2 + W3W2 w2
—3WAWL W, W2 + 3WA Wy W2WZ — W3W2 — W3W3 W2
+WAWE W, W]/ Wa. (4.9)
We substitute th@-function into (3.4) and solve with respecto,, w,) as a function of
6. Substituting the solutiofw, (), w,(#)) into (3.5)—(3.8), we obtain the interface tension,
2D island shape and the interface stiffness.
Note that theD-function has mirror symmetry with respectio-axis, i.e.D(k, ky) =
D(k, —ky). Therefore, the island shape has mirror symmetry with respect tg theis. That
is, wy (0) = 0 andw, (r) = O are the solutions of (3.4). At the orientation corresponding to
6 = 0oré = &, the form (4.2) reduces to
D(ky,0) = M + c3 + ¢y coshk,) + 2¢; coshk, /2) + ¢, cosh2k,) + 2¢c, coshk,)
+2c3 cosh(3k, /2) + s1 sinh(k, ) + so sinh(2k, ) — 2s, sinh(k,)
+2s4 Sinh(k, /2). (4.10)
From the solution ofD(k,,0) = 0 (wy(0) = w,(7) = 0), we obtain costw,(0)/2) and
coshw, (7r)/2). Then, from (3.5), step tension becomes
v (0) = 2kgTcosh }(w, (0)/2) y () = 2kgTcosh L (w, () /2). (4.11)
IntheT — 0 limit, step tension (step free energy per lattice constant) becomes
y(0) = min[2Jy + 4J, + 2H, 2(2J1 + 4J, — 3H)]
y () = min[2Jy + 41, — $H, 2(2J, + 4J, + 5H)]
where minf, b] denotes the smaller one {n, b}.
From (3.7), the step stiffness becomes
7(0) = kg T'[|c1 Sinh(w, (0)/2) + (c1 + 2c2) sinh(w, (0)) + 3c3 SiNh(3w, (0)/2)
+2c sinh(2w, (0)) + 54 Cosh(w, (0)/2) + (s1 + 2s52) coshw, (0))
+252 OS2, (0))[1/[2¢2(2¢5 + ¢1 COSNw, (0) /2) + 4c2 CosH (0))
+c3C0Sh(3w, (0)/2) + 54 8iNM(w, (0)/2) — 4s2 sinh(w, (0)))] (4.13)
Y () = kg T[|c1 Sinh(w, (1) /2) + (c1 + 2c2) sinh(w, (1)) + 3c3 siNh(3w, (1) /2)
+2¢, sinh(2w, (7)) + 54 cOSHw, (1) /2) + (s1 + 252) coshw, (7))
+252 COSH 2w, (1)) ] /[2¢5 (2c3 + c1 COSHw, (1) /2) + 4cz COSHa (7))
+¢3COSN3wy (1) /2) + 54 Sinh(w, (71)/2) — 4s Sinh(w, (7)))]. (4.14)

(4.12)
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Figure 3. An example of calculation by the use of thefunction of (4.2). (a) The island shape at
900°C, (b) a polar graph of step stiffness at 9@ (c) temperature dependence of step tension,
(d) temperature dependence of step stiffness and (e) temperature depend@ﬁequb,f. We
have set/; = 165 meV,J, = —16.5 meV andH = 165 meV. Kink energies are 88 meV for the
(211) step and 176 meV for th@11) step. In (c)—(e), thick lines correspond@l1) steps, thin
lines to(211) steps and broken lines @01} steps.

Infigure 3, we show an example of an equilibriumisland shape and a polar graph of step stiffness
atJ; = 165 meV,Jo/J; = —0.1, lattice constant= 3.84 A andH/J; = 1. We also show
the temperature dependence of step tension, step stiffness, the coefficient of step interaction
(3.11) whereg = B/a?, a;, = 3.14 A andgo = 0.

In the absence of nnn interactiort®, andW, reduce to unity. Thé&-function (4.2), then,
becomes
D(ky, ky) = M + cycoshlky) + 2c coshlk, /2 — cyky) + c1 COSNk, /2 + ¢ ky) + s1.Sinh(ky )

+sa8inh(k, /2 — ¢ ky) + sasinh(k, /2 +cyky) (4.15)

M =1+3W2+3W*+ Wo+aw3(w3 + 1/ W3)
c1=—1—-WYPWA+W)2(L+W2)/ Wy
s1=—sa=(1—=W>2WA+W)2(L+Wy)(1 — Wg)/ Wy co=c3=s=0 (4.16)

which agrees with th@-function given in [13].
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4.2. The case off =0

At H = 0, s1, s2 andsy in (4.2) become zero, sind&y reduces to unity. Thé-function,
then, has the symmet® (k,, k,) = D(%k,, k). The island shape has mirror symmetry
with respect to thé,-axis too;w, (/2) = w,(37/2) = 0 becomes the solution of (3.4). The
equation

D(0, ky) = M + ¢y + 2+ 2(c1 + ¢3) COSNcyky) + (22 + ¢3) cOsH2¢y k) = 0 (4.17)

is solved, in terms of cogh,w,) (k, = iw,), as

c1tes (c1+c3)?  —c1tcatez—M
cos = — + + =z. 4.18
o) = = e+ en \/4(2c2 Y2 22c+ca) ‘ (4.18)
By use of this solution, we obtain the step tension as
ks T
y(/2) = y(37/2) = —— coshri(z) (4.19)
C

y
and the step stiffness as

—4kgTcyv/z2 — 1cy + c3 + 2(2c2 + ¢3)z]
2c1 +4cy + (c1+ 9c3)z + 8epz?

In the case offa, = Jg» = 0, the D-function reduces to that of the exact solution for the
nn honeycomb lattice system [22].

y(/2)=y@r/2) = (4.20)

That s,
D(ky, ky) = M + cycoshtky) + ¢y coshtky /2 — cyky) + c1 COSNk, /2 + ¢ yky)
M=Q+W)2(1—2W +6W2 —2Ww3+ w? (4.21)

c1=—-2(1—W)2W@1+W)? cp=c3=151=252=254=0.
At 6 = 0, we obtain an explicit form of the solutions as

wy(0) =0 coshw,(0)/2) = 1/3—2M/c; — 1. (4.22)
Also, até = /2, we have
wy(/2) =0 costicywy(1/2)) = 3(—M/c1 — 1). (4.23)

Hence, the interface tensions become
y(0) = 2kgT In(my)
my=—3+32,+ %\/m (4.24)
L+W)WV1I-W+Ww2
T JWii—w
y(w/2) =1/cykgT IN[(=2+ 1/ W + W)/2]. (4.25)

Due to the Wulff theoremy (0) andy (r/2) give the linear size of the island shape along
andy-directions. The explicit form of interface stiffness becomes

ksT 228/ =3 — 222+ 22

<2

7(0) = 4.26
7(0) 2 2(z2—1) (4.26)
. _ (1+W?|1—4W + W2

y(w/2) _4kBTCy1+4W—6W2+4W3+W4. (4.27)
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4.3. Triangular lattice

In the limit of J; — 0, the system becomes two independent triangular lattice gases. In
this case, the random walk treatment on the honeycomb lattice may not be good enough. In
fact, (4.2) in this limit gives a-function slightly different from the known exact one on the
triangular lattice. Hence, we need a separate study to treat this case.

The D-function of the triangular lattice becomes

D3(k,, k,) = M — ¢1 coshk,) — 2 COSH~/3k, /2 — ky/2) — c3c08h(v/3k, /2 +k,/2),

(4.28)
where
M =1+ W2W2+ W2W2 + W22 c1=2(1— W)L+ W)W Ws
c2 = 2W1Wa(1 — Wa3) (1 + Wa) c3 = 2Wi(1 — Wp) (1 + W) Ws (4.29)

W1 = exp[-2J1/(kgT)], Wo = exp[-2J,/(ksT)] and W3 = exp[-2J3/(kgT)]. The
equations agree with the known exact one [22]. Note that the formz¢f,, k) (4.27) is
essentially the same d3(k,, k,) of the nn honeycomb lattice (4.20). Therefore, the island
shape of the triangular lattice obtained from (3.4) is the same as the one of the honeycomb
lattice. The difference isthe temperature dependence of coefficients. JWhet, = J; = J,

i.e. W1 = Wa = W3 = W, the D-function has a symmetry dPz(k., ky) = Da(£k,, k).

Hence, we have explicit forms ¢f andy for special orientations. Therefore, we have

2 1-w?
0) = —kgTIn | ——— 4.30
10 = ko [ZWZ} (4.30)
11 1+3w4
2) = 2kgTcosh — =+ 2 [3+ . 4.31
vs(n/2) = 2ksT oS ( 2 2\/ W2(1— W)(1+W)) (4.31)
The step stiffness is written as

N 2/3ksT (1 + W2)|1 — 3W?2

73(0) = BT ) | (4.32)

1+6W2—3w4

5 2kgT /(1 +3W2)(1+3W4— 2Wzy + 2W3zq) 1+3Ww2
2) = = . (433
y3(m/2) 3 W= WL W7 z1 1-w2 (4.33)

5. Application to Si(111) surface

5.1. The 7x 7 reconstructed surface

At temperatures lower than thex77 <> 1 x 1 transition temperature{1130 K), the Si(111)
surface forms a & 7 reconstructed structure called the DAS (dimer adatom stacking-fault)
structure [23]. The unit cell of the DAS structure is divided into the faulted half (FH) and
the unfaulted half (UH) [24], each of which forms a triangular lattice. It has been observed
that the step structure is well described by the combination of the FH unit and UH unit [25].
We consider, therefore, a pair of triangular sublattices, where the one represents the FH lattice
system, and the other represents the UH one. Consequently, the system becomes equivalent
to a stoichiometrically binary lattice gas on a honeycomb lattice with nn interactions, where
the inequivalent sites of the lattice gas model are coarse-grained representations of these two
halves of the & 7 unit cell. Therefore, we can use (4.15) and (4.16) to calculate step quantities.

In figure 2, we regard closed circles as FH units, and open circles as UH units. We set lattice
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Figure 4. Examples of a step edge on the<77 reconstructed Si(111) surface. ‘U’ denotes an
unfaulted half unit, and ‘F’ denotes a faulted half unit.

constant= 3.84 x 7 A and step height= 3.14 A. We introduce the step running direction
angled so that a straight step with= 0 corresponds to thel12) step (figure 4).

In spite of the extensive experimental studies on Si(1¥1y&tructure, the values of kink
energy and step tension have not been settled yet. As one trial, we adopt the result of Eaglesham
etal[26] where step tensigmnat 700°C was obtained from the equilibrium crystal shape (ECS)
of Si: y111 = 5.7 x 10711 I m? for the (111) surface anghgo = 1.0 x 10~ J m? for the
(100) surface. Due to the 2 1 reconstruction, this value ofog corresponds to the mean
value of theS 4-step tension and th&z-step tension, and is consistent with the one calculated
in our previous papers [4, 15].

We choose kink energy so that the calculated mean value of step tensi@ifprand
(211) at 700°C reproduces the above mentioned valugs 1011 J m! (= 36 meV A Y).

In addition, the experimental observation of the island shape (and also the shape of the spiral
step) gives further information on the kink energy, due to the Wulff theorem for 2D ECS. Let
h, be the distance between the centeeWulff point) of the ECS (island shape, in our case)

and the tangential line of the ECS at a position on the ECS curve, whés¢he interface
normal vector at the position. The Wulff theorem states that the katie,, (y,.: interface
tension, or step tension in our casehisndependent, leading to a relation/y,,y = h,/hyn

for arbitraryn andn’. From the photographs of the experimental observation [27, 28], we
havehs,41/ hyi; = 1.2. This ratio gives the ratio between the step free energies corresponding
to these directions. At the low temperature where the observation was made, these step free
energies are well approximated by the step formation ene@ies 2H /3) and(2J —2H/3)

(see (4.12)), giving uésq,/hyq; = 1.2 = (2J + 2H/3)/(2J — 2H/3) which amounts to

H/J = 0.31.

We then set/ = 0.475 eV andH = 0.15 eV. The kink energy becomes0b eV =
2J +2H /3 for the(211) step and B5 eV = 2J — 2H /3 for the(211) step, which are smaller
than but of the same order as magnitude of the ones reported in [29] and [21].

The difference in the on-site energy between the UH and FH, is then— Eyy =
4H = 0.59 eV. In the first principles study of Meade and Vanderbilt [30], surface energies of
the Si(111) surface for various structures are calculated: for exampkeeV/1 x 1 for the
2 x 2-adatom structure, and2l/ eV/1 x 1 for the 2x 2-adatom (faulted) structure. From
these values, we can estimdigy — Eyy to be(1.27 — 1.24) x 24 ~ 0.7 eV which is in
reasonable agreement with our value 0.59 eV.

In figure 5, we show equilibrium island shape at 400and 850 C, and the temperature
dependence of step tension, step stiffness and step interaction coefficienB/a? (see
(3.11)). The step tension is almost constant below 1130 K, because the temperature is very
low as compared with the lattice-gas melting temperature of the med&3Q0 K). On the
other hand, the step stiffness strongly depends on temperature in the same region. The step
stiffness for thg211) step increases rapidly as temperature decreases, while the step stiffness
of the (011) step becomes smaller and smaller and converges to zero at zero temperature.
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Figure 5. Calculation for % 7 reconstructed surface by the use of fhéunction of (4.15). (a) The
island shape at 85, (b) the island shape at 400, (c) temperature dependence of step tension,
(d) temperature dependence of step stiffness and (e) temperature depend@ﬁcquh,f. We
have set/ = 0.475 eV, 44 = 0.59 eV. Kink energy= 1.05 eV for the(211) step and 0.85 eV
for the (211) step. In (c)—(e), thick lines correspond @il1) steps, thin lines t¢211) steps and
broken lines td101} steps.

Note that a similar analysis can be made foram DAS structure. From the photographs
of a small island of 5«< 5 structure [28], we find that the island shape has a sixfold rotational
symmetry in contrast to the case of the7structure which has a threefold rotational symmetry.
Recall that the sixfold rotational symmetry appears only wiien= 0 (see section 4.2).
Therefore, the energy difference between FH and UH units in the case of thg BAS
structure is very small if it exists. We stress here that, also for other structures, observation
of the anisotropy of the equilibrium island shape will be useful in determining the energy
difference between FH and UH units.

5.2. The 1x 1 high-temperature surface

The high-temperature Si(111) surface at about“@@as the structure of thex 1 surface
together with disordered adatoms with concentration of 0.25 [31-33]. Further, Kohmoto and
Ichimiya [31] reported that the number ratio of adatoms sitting on theif€ and H site is
4:1. Although the adatoms are considered to be in a disordered phasey8oad/3 peaks
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Figure 6. Calculation for 1x 1 surface (case 1) by the useBffunction of (4.2). (a) The island
shape at 900C, (b) a polar graph of step stiffness at 9@) (c) temperature dependence of step
tension, (d) temperature dependence of step stiffness and (e) temperature depergjeHWmS.

We have sefi; = 60 meV,J> = 12 meV andd = 60 meV. Kink energy= 176 meV for the211)
step and 256 meV for th@11) step. In (c)—(e), thick lines correspond(@i1) steps, thin lines to
(211) steps and broken lines {401} steps. Open squares: [38]. Open circle: [36].

appear in diffraction observations [31, 34] which suggests the existence of short-range order
corresponding to formation of the hard-hexagon units [35].

For the high-temperature surface of Si(111), experimental measurement of the step tension
and the step stiffness has been a subject of active study [21, 36—39]. The experimental values
are, however, not settled yet. We make, therefore, several trial calculations for possible cases.
In all cases, we choose the microscopic coupling constants so that the calculated step stiffness
at 900°C reproduces the value presented by Bagedl [36].

5.2.1. Case 1: adatom in disordered phase without short-range ord&e use the honeycomb
lattice-gas system of (4.2), with and J, being regarded as effective coupling constants.

In figure 2 we regard the filled circles as atoms of the top layer and the open circles as
those of the second layer (the lattice constar& 84 A, the step height, = 3.14 A).

We introduce the step running direction angleso that a straight step with = 0
corresponds to th€l12) step. The effect of dangling bonds normal to the (111) plane are
taken into account by setting/J1 = 1.
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Figure 7. Examples of an interface configuration for two cases of adatom orderingg3(a)/3

and (b) 2x 2. The thick line represents the interface. A atoms and B atoms are indicated by filled
circles and open circles, respectively. Adatoms are indicated by shaded large circles. Broken lines
denote boundaries between the hexagons.

We calculate equilibrium island shape, step stiffness and step interaction coefficient, which
we show in figure 6. Here, assuming thiats small, we have seb/J; = 0.2andJ; = 60 meV.
The kink energy becomes 176 meV for tt#i1) step and 256 meV for th@11) step. As is
seen in the island shape and the polar graph of step stiffness &€ 9@re remains anisotropy
in the step stiffness in spite of the circular island shape. The most significant characteristic of
this result is the asymmetry between the orientati@i4) and(211). In contrast to the % 7
structure, the stiffness as a function of the step orientation takes its maxim@diat

5.2.2. Case 2: tha/3 x +/3 short-range ordered phase.In the case of the/3 x +/3
ordered phase of adatoms, we calculate step quantities by using the triangular lattice-gas model
(figure 7(a)). As has been pointed out in section 4, the system has sixfold rotational symmetry.
We set the lattice constant to b&3 x +/3 A, and the step height to be 3.14 A. We introduce
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Figure 8. Case 2. Calculation fox/3 x /3 adatom ordering (case 2) by the use of ihe
function of (4.30)—(4.33). (a) The island shape at 900 (b) a polar graph of step stiffness at
900°C, (c) temperature dependence of step tension, (d) temperature dependence of step stiffness,
(e) temperature dependencegof B/af. We have sef = 62 meV. Kink energy= 248 meV for
the{101} step. In (c)—(e), thick lines correspond{&i1} steps and thin lines t{L01} steps. Open
squares: [38]. The open circle: [36].

the step running direction angleso that a straight step with= 0 corresponds to thel12)

step. The step tension and the step stiffness are calculated exactly from (4.30)—(4.33). The
effective coupling constant is obtained tobe= 62 meV (kink energy= 248 meV). We show

the calculated results in figure 8. The step stiffness takes its maximum at the oriefitatipn

5.2.3. Case 3: the X 2 short-range ordered phase.Calculation of step quantities can be
done in the same fashion as in case 2. We set the lattice constaBgas 3 A, and the step
height as 3.14 A (figure 7(b)). We introduce the step running direction arsgi¢hat a straight
step withd = 0 corresponds t¢011) step. The step stiffness takes its maximunj2it1}.
The effective coupling constant is obtained tosbe- 67 meV (kink energy= 268 meV). We
show the calculated results in figure 9.
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Figure 9. Case 3. Calculation for 2 2 adatom ordering (case 3) by the use of fthdunction

of (4.30)—(4.33). (a) The island shape at 9@0 (b) a polar graph of step stiffness at 9@

(c) temperature dependence of step tension, (d) temperature dependence of step stiffness and
(e) temperature dependencegof B/a,?. We have sef = 67 meV: Kink energy= 268 meV for

the 211 step. In (c)—(e), thick lines correspond{fi1} steps and thin lines tf101} steps. Open
squares: [38]. The open circle: [36].

6. Summary

We have considered the honeycomb lattice Ising system in a staggered field with both nearest-
neighbour (nn) and next-nearest-neighbour (nnn) interactions, to calculate interface tension,
interface stiffness and island shape by the imaginary path-weight (IPW) method.

We have applied the calculated results to Si(111%) 7-reconstructed surfaces and the
high-temperature Si(111) & 1 surface. We have made an estimation of the microscopic
coupling constants from existing experimental data, and have drawn the equilibrium island
shape, step tension, step stiffness and the coefficient of step interaction, with their temperature
dependence. Our analysis made in the present paper will be helpful in determining precise
value of the kink energy from experimental observation.

Our lattice-gas treatment made in the present paper corresponds to the two-level
approximation for the surface fluctuation. Fortunately, the temperature range of our concern
in the present study is very low: the two-level approximation is expected to be fairly reliable.
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On the other hand, at higher temperatures, near the roughening transition temperature, we
should consider multilevel fluctuation of the surface. Even in such cases, we have an efficient
method, namely, thiemperature-rescaled Ising-model approdth], where the IPW method

is combined with the numerical renormalization-group method [40]; details will be discussed
elsewhere.
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